Fluid Dynamic Limits of the Kinetic Theory of Gases

نویسنده

  • François Golse
چکیده

These three lectures introduce the reader to recent progress on the hydrodynamic limits of the kinetic theory of gases. Lecture 1 outlines the main mathematical results in this direction, and explains in particular how the Euler or NavierStokes equations for compressible as well as incompressible fluids, can be derived from the Boltzmann equation. It also presents the notion of renormalized solution of the Boltzmann equation, due to P.-L. Lions and R. DiPerna, together with the mathematical methods used in the proofs of the fluid dynamic limits. Lecture 2 gives a detailed account of the derivation by L. Saint-Raymond of the incompressible Euler equations from the BGK model with constant collision frequency [L. Saint-Raymond, Bull. Sci. Math. 126 (2002), 493–506]. Finally, lecture 3 sketches the main steps in the proof of the incompressible Navier-Stokes limit of the Boltzmann equation, connecting the DiPerna-Lions theory of renormalized solutions of the Boltzmann equation with Leray’s theory of weak solutions of the Navier-Stokes system, following [F. Golse, L. Saint-Raymond, J. Math. Pures Appl. 91 (2009), 508–552]. As is the case of all mathematical results in continuum mechanics, the fluid dynamic limits of the Boltzmann equation involve some basic properties of isotropic tensor fields that are recalled in Appendices 1-2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of nanodroplet impact on a solid surface

A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...

متن کامل

Simulation of nanodroplet impact on a solid surface

A novel computational fluid dynamics and molecular kinetic theory (CFD-MK) method was developed to simulate the impingement of a nanodroplet onto a solid surface. A numerical solution of the Navier–Stokes equation using a volume-of-fluid (VOF) technique was used to model nanodroplet deformation. Dynamic contact angle during droplet impact was obtained by molecular kinetic theory. This dynamic c...

متن کامل

Dynamic Instability of Visco-SWCNTs Conveying Pulsating Fluid Based on Sinusoidal Surface Couple Stress Theory

In this study, a realistic model for dynamic instability of embedded single-walled nanotubes (SWCNTs) conveying pulsating fluid is presented considering the viscoelastic property of the nanotubes using Kelvin–Voigt model. SWCNTs are placed in longitudinal magnetic fields and modeled by sinusoidal shear deformation beam theory (SSDBT) as well as modified couple stress theory. The effect of slip ...

متن کامل

Electro-Thermo-Dynamic Buckling of Embedded DWBNNT Conveying Viscous Fluid

In this paper, the nonlinear dynamic buckling of double-walled boron-nitride nanotube (DWBNNT) conveying viscous fluid is investigated based on Eringen's theory. BNNT is modeled as an Euler-Bernoulli beam and is subjected to combine mechanical, electrical and thermal loading. The effect of viscosity on fluid-BNNT interaction is considered based on Navier-Stokes relation. The van der Waals (vdW)...

متن کامل

Effects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory

This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013